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ANALYSIS 2
VERSION 10. Februar 2026

LISIBACH ANDRE

1. INTEGRALRECHNUNG

1.1. Motivation. Abschnitt 1.1.1 motiviert den Begriff der Stammfunktion, Abschnitt
1.1.2 motiviert den Begriff des bestimmten Integrals.

1.1.1. Physikalische Motivation: Kinematik. Sei f(t) die Position eines Korpers zur Zeit
t. Im Abschnitt zur Differentialrechnung haben wir gesehen dass die Geschwindigkeit
v(t) gegeben ist durch’

daf
)= —(t
o(t) = (1)
und die Beschleunigung gegeben ist durch
_dv, d>f

a(t) = E(t) = W@'

Bei gegebener Position f(t) erlauben es die obigen Gleichungen somit die Geschwindig-
keit und die Beschleunigung des Kérpers zu berechnen.

Ein natiirliches Problem ist die Umkehrung dieser Berechnungen, i.e. die Berechnung
der Position aus gegebener Geschwindigkeit oder die Berechnung der Geschwindigkeit
aus gegebener Beschleunigung. Diese Berechnungen finden ihre Anwendung in der Pra-
xis, da in vielen Situationen eine bekannte Kraft F(¢) auf einen Korper einwirkt (zum
Beispiel die Gravitationskraft). Mit dieser bekannten Kraft ist die Beschleunigung durch
das Newtonsche Bewegungsgesetz (F' = ma) gegeben:

(hier ist m die Masse des betrachteten Korpers) und durch Umkehrung der Ableitung
lasst sich die Geschwindigkeit v(t) und die Position f(t) berechnen. Die Umkehrung der
Ableitung ist das Bestimmen einer Stammfunktion.

Die Kinematik ist bei weitem nicht das einzige Anwendungsgebiet der Integralrech-
nung. Die meisten physikalischen Gesetze sind gegeben durch Differentialgleichungen,
i.e. in diesen Gleichungen treten die Ableitungen der gesuchten Funktionen auf. Die
Umkehrung der Ableitung ist somit zentral zur Berechnung der Losungen dieser Glei-
chungen.

1.1.2. Geometrischer Zusammenhang. Wir stellen einen Zusammenhang her zwischen
der obigen kinematischen Motivation und einem geometrischen Problem. Wir betrachten
einen Korper der sich in einer Dimension mit konstanter Geschwindigkeit v(t) = vy =
konst. bewegt. Der zuriickgelegte Weg zwischen der Zeit ¢ = a und t = b ist gegeben
durch

Zuriickgelegter Weg = Geschwindigkeit - Zeitdifferenz

IDjes ist die Definition der Geschwindigkeit im Falle einer Bewegung in einer Dimension. In mehreren
Dimensionen ist die Position beschrieben durch 7 (¢) und die Geschwindigkeit definiert durch ' (t) =

a7 (4).
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=vp(b— a).

Betrachten wir den Graphen der Funktion y = v(t) = vg dann entspricht der zuriick-
gelegte Weg der Fldache zwischen der #-Achse und dem Graphen der Funktion y = vy,
horizontal begrenzt durch a <t < b:

Y

A

Nun betrachten wir eine Situation in welcher die Geschwindigkeit v(t) des Korpers
nicht konstant ist. Die obige einfache Formel zur Berechnung des zuriickgelegten Weges
zwischen den Zeitpunkten ¢ = a und t = b ist nicht mehr direkt anwendbar. Die folgende
Idee fiihrt zu einer approximativen Berechnung des zuriickgelegten Weges: Man unterteilt
den betrachteten Zeitabschnitt [a, b] in Teilabschnitte und nimmt in jedem Teilabschnitt
die Geschwindigkeit als konstant an. In jedem Teilabschnitt ist die obige Formel zur
Berechnung des zuriickgelegten Weges anwendbar.

Geometrisch betrachtet entspricht diese Approximation des zuriickgelegten Weges der
Flache zusammengesetzt aus Rechtecken, deren Grundseite auf der ¢-Achse liegt und
deren Hohe durch den als konstant gewdhlten Wert der Geschwindigkeit im jeweiligen
Intervall gegeben ist:

yd ARG
-’
to t1 ta t3 ti ts
I I
a b
(In dieser Grafik wurde das Intervall [a,b] in finf Teilintervalle [t;—;,¢;] mit i =1,...,5

unterteilt und der konstante Funktionswert in den Intervallen wurde durch die Auswer-
tung der Funktion v(t) jeweils in der Mitte der Teilintervalle bestimmt).

Je grosser man die Anzahl Teilintervalle wahlt, desto besser wird die Approximation
des zuriickgelegten Weges.
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Die Approximation nahert sich der Flache unter dem Graphen von y = v(t), somit
entspricht der zuriickgelegte Weg also dieser Fliche?. Die Berechnung der Fliche unter
dem Graphen einer Funktion ist die Berechnung des bestimmten Integrals®.

Wir haben bis zu diesem Punkt die beiden Begriffe Stammfunktion und bestimmtes
Integral motiviert. Das Auffinden einer Stammfunktion entspricht der Umkehrung der
Ableitung und die Berechnung des bestimmten Integrals entspricht der Berechnung der
Flache unter der Kurve des Graphen der Funktion. Wir haben aber gesehen dass in
der physikalischen Anwendung der Kinematik beides der Berechnung des Weges (oder
Position, was in den obigen Beispielen das gleiche ist) aus einer gegebenen Geschwin-
digkeit entspricht. Somit ist klar dass die Stammfunktion und das bestimmte Integral
eng miteinander verkniipft sind. Diese Verkniipfung wird durch den Fundamentalsatz
der Differential- und Integralrechnung hergestellt.

2Wir weisen darauf hin dass im Allgemeinen der zuriickgelegte Weg und die Position eines Korpers
nicht {ibereinstimmen. Dies sieht man am Beispiel eines Oszillators, dessen Position am Anfang und am
Ende einer Schwingungsperiode gleich sind (zum Beispiel der Nulllage entsprechen), welcher aber durch
die Schwingungsbewegung wihrend der Periode einen Weg zuriickgelegt hat.
3Dies ist nur korrekt wenn man Flichen unterhalb der ¢-Achse mit negativem Vorzeichen gewichtet
(siehe spéter).
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AUFGABEN

AUFGABE 1

Man finde die Menge aller Stammfunktionen fiir:

() f(z) =4 (v) f(x) =847
(i) 7(z) = 4 vi) f(z) = e
(iii) f(x)=2x+7 (vii) f(z) =a"
(iv) f(z) =5 (viii) f(z) = —cos(z) + sin(x)
(ix) f(z) = cos(2x)
AUFGABE 2

Man bestimme zu den folgenden Funktionen eine Stammfunktion.

(i) f(z) = sin(mz)

AUFGABE 3
Man bestimme zu den folgenden Funktionen eine Stammfunktion (Hinweis: Fiir (iii)
benutze man % arctan(z) = H%)
(i) f(2) = 757 (iii) f(2) = 1752
(ii) f(x) =sin (22 — %) (iv) f(x) =e!l™®

AUFGABE 4

Man bestimme eine Stammfunktion der Betragsfunktion f(z) = |z|.

AUFGABE 5

Ein Korper habe zur Zeit ¢t = 0 die Geschwindigkeit v(0) = vp und Position s(0) = so.
Es gelte a(t) = a = konst. Man bestimme die Position in Abhéngigkeit der Zeit, i.e. s(t).

AUFGABE 6

Ein Massenpunkt sei zur Zeit ¢ = 0 an der Stelle sg = 3 und habe die Geschwindigkeit
vo = 5. Man bestimme seine Position in Abhéngigkeit der Zeit wenn er mit a(t) =
24+t — %tQ beschleunigt wird.

AUFGABE 7

Die Beschleunigung eines Korpers sei a(t) = e3t. Zur Zeit t = 0 hat der Korper die
Geschwindigkeit vg = 3 und die Position sp = 0. Man finde s(t).

AUFGABE 8

Die Position eines Korpers sei gegeben durch s(t) = 2e~! + 23 + 3t% 4+ 1.
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(i) Man berechne den Ruck (Ableitung der Beschleunigung) zur Zeit ¢ = 0 und
t=3.

(ii) Man schreibe die Ausdriicke fiir die die Position s(t), Geschwindigkeit v(t) und
Beschleunigung a(t) mit Einheiten.

AUFGABE 9

Ein Korper erfahrt die Beschleunigung a = —2. Welchen Weg legt er in der Zeit von
t = 0 bis t = 3 zuriick, wenn die Anfangsgeschwindigkeit vg = 1 und die Anfangsposition
so = 16 betrdgt. Hinweis: Der zuriickgelegte Weg entspricht nicht direkt der Position

s(t).

AUFGABE 10

Es sei der Ruck r(t) = rp = konst. gegeben. Weiter gelte s(0) = sp, v(0) = vp und
a(0) = ag. Man bestimme die Position s(t).

AUFGABE 11

Ein Kérper erfihrt die Beschleunigung a(t) = t2. Es gelte s(0) = 11/12, s(1) = 2.
Man bestimme s(t).

AUFGABE 12

Zu dem gegebenen Beschleunigungsverlauf y = a(t) zeichne man qualitativ den Ver-
lauf der Geschwindigkeit y = v(¢) und der Position y = s(¢), durch die gegebenen
Punkte.

y
y=s(t)
1 * 1 1 | | | t
y
y = v(t)
1 * 1 1 | | | t
y
y = a(t)
I
: 3 | | 3 ¢
o
) |
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LOSUNGEN ZU DEN AUFGABEN

LOSUNG ZU AUFGABE 1
Es gilt jeweils C € R.

(i) F(z) =4z +C (vi) F(z) = 1e'*+C

(ii) F(z) =222+ C (vil) F(z) = %Ha:"ﬂ +C
(iii) F(z) =2>+ Tz +C (viii) F(x) = —sin(x) — cos(xz) + C
(iv) F(z) = 3log(z) +C (ix) F(z) = Lsin(2z) +C

(v) F(x) =2+ C

LOSUNG zU AUFGABE 2

(i) F(x) = —cos(mzx) + C

(i) X(f) = LfT+C
(iii) H(t) = —3e 2+ C

)

)
(iv) X(v) = 3sin(v/3) + C
LOSUNG ZU AUFGABE 3

(i) F(z) =log(z+1)+C (ili) F(z) = 3 arctan(2z) + C
(i) F(z) = —%cos (22— %) +C (iv) F(z) = —e!™* +C

LOSUNG ZU AUFGABE 4

Wir benutzen die Definition der Betragsfunktion, i.e.
—x fir x <0,
f(x)—|:n|—{ rz firz>0.

Wir erhalten somit fiir die Stammfunktion
2 .

_f —2*/2 firx <0,
F(x)_{ z?/2  fiir x > 0.

ozl
= —X|x].
2

LOSUNG ZU AUFGABE 5
s(t) = %atQ + vot + Sp.

LOSUNG ZU AUFGABE 6
s(t) = —gptt + $t3 + 2 + 5t + 3.

LOSUNG ZU AUFGABE 7
s(t) = deat 4t — 4.

LOSUNG zZU AUFGABE 8

(i) Wir bezeichnen den Ruck mit r(¢). 7(0) = 10, r(3) = 12 — 2e~3.
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(i) s(t) =2 'm+ 2633 4 3238 4 1m,
v(t) = —2e7% 2 4+ 623 + 6t
a(t) =2e~"" 3 + 12t + 63,

LOSUNG zZU AUFGABE 9

Wir haben s(t) = —t2 + ¢ + 16. Dies ist die Position in Abhiingigkeit der Zeit. Auf-
getragen als Funktion ist es eine nach unten gedffnete Parabel. Der Kérper bewegt sich
somit zuerst nach oben bis zum Scheitelpunkt der Bewegung und danach wieder nach
unten. Der Scheitelpunkt befindet sich bei s(1/2) = 16.25 und wir haben s(3) = 10. Der
zurilickgelegte Weg ist somit gleich 6.5.

LOSUNG zU AUFGABE 10
s(t) = %rot?’ + %aotQ + vot + sp.

LOSUNG zZU AUFGABE 11
s(t) = Htt +t+11/12.

LOSUNG zU AUFGABE 12

Man beachte dass der Anstieg im v(t)-Verlauf quadratisch und im s(t)-Verlauf zuerst
kubisch (fiir zwei Zeiteinheiten) und dann quadratisch ist.
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