

LAGRANGIAN MECHANICS PROBLEM SETS

LISIBACH ANDRÉ

In the following we use boldface symbols to denote vectors.

1. HAND IN:4.3.26, COUNT: 15PTS.

1.1. Rotating Reference Frame. Let $\mathbf{r}(t)$ describe the two-dimensional motion of a particle in an inertial frame. Let $\mathbf{s}(t)$ describe the same motion but in a reference frame which is related to the inertial frame by $\mathbf{r} = R\mathbf{s}$, where

$$R = R(t) = \begin{pmatrix} \cos(\omega t) & -\sin(\omega t) \\ \sin(\omega t) & \cos(\omega t) \end{pmatrix}.$$

I.e. $\mathbf{s}(t)$ describes the motion of the particle in a reference frame which rotates counter clockwise relative to the inertial frame with angular velocity ω .

(i) The equation of motion in the inertial frame is given by $m\ddot{\mathbf{r}} = \mathbf{F}$. Show that the equation of motion in the rotating frame is

$$m\ddot{\mathbf{s}} = \mathbf{K} + \mathbf{F}_{cf} + \mathbf{F}_{co},$$

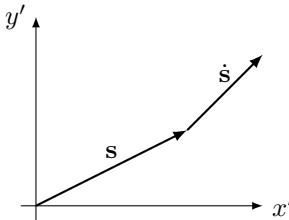
where $\mathbf{K} = R^{-1}\mathbf{F}$ is the acting force written in components of the rotating frame and

$$\mathbf{F}_{cf} = -mR^{-1}\ddot{R}\mathbf{s}, \quad \mathbf{F}_{co} = -2mR^{-1}\dot{R}\mathbf{s}$$

are the centrifugal and Coriolis forces respectively (both being inertial forces).

Hint: Take the time derivative of $\mathbf{r} = R\mathbf{s}$ twice and multiply the resulting equation with $R^{-1}(t) = R(-t)$ from the left.

(ii) Compute the inertial forces in terms of m , ω , \mathbf{s} and $\dot{\mathbf{s}}$ and draw these two forces qualitatively in the following situation which shows the location and velocity of the particle in the rotating frame at a certain instant of time:



Hint: Compute the matrix products first, before multiplying with the vectors \mathbf{s} , $\dot{\mathbf{s}}$.

1.2. Angular Momentum of System of Particles. Show that the rate of change of the angular momentum of a system of particles equals the torque due to the external forces. I.e. show that

$$\dot{\mathbf{L}} = \mathbf{M},$$

where \mathbf{L} and \mathbf{M} are the angular momentum of the system of particles and the torque due to the external forces, respectively, given by

$$\mathbf{L} = \sum_{i=1}^n \mathbf{r}_i \times \mathbf{p}_i, \quad \mathbf{M} = \sum_{i=1}^n \mathbf{r}_i \times \mathbf{F}_{ie}.$$

Hint: Take the cross product of \mathbf{r}_i with both sides of the equation of motion for the i 'th particle:

$$\dot{\mathbf{p}}_i = \mathbf{F}_{ie} + \sum_{\substack{j=1 \\ j \neq i}}^n \mathbf{F}_{ij}$$

and sum over the index i . To convince yourself that the resulting double sum $\sum_{i=1}^n \sum_{\substack{j=1 \\ j \neq i}}^n \dots$ vanishes, consider first the case $n = 2$ and use Newtons third law.

1.3. Decomposition of Kinetic Energy. Show that the kinetic energy T of a system of n particles with masses m_i and velocities $v_i = |\dot{\mathbf{r}}_i|$

$$T = \sum_{i=1}^n \frac{1}{2} m_i v_i^2$$

can be written as the sum of the kinetic energy of the center of mass motion T_R and the kinetic energy of the relative motion T_r , where

$$T_R = \frac{1}{2} M \dot{\mathbf{R}}^2, \quad T_r = \sum_{i=1}^n \frac{1}{2} m_i \dot{\mathbf{r}}_{iR}^2.$$

Here M and \mathbf{R} are the total mass and the center of mass of the system respectively. Also,

$$\mathbf{r}_{iR} = \mathbf{r}_i - \mathbf{R}$$

is the position of the i 'th particle relative to the center of mass.

Hint: Compute the above expression for the kinetic energy T , using $\mathbf{r}_i = \mathbf{r}_{iR} + \mathbf{R}$ and the definition of the center of mass: $\mathbf{R} = \sum_i m_i \mathbf{r}_i / M$.