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The present document contains lecture notes for an elective course at Bern University of
Applied Sciences. The notes are meant as a complementary aid for students and no claim to
completeness is made.

1. Newtonian Mechanics

1.1. Single Particle.

1.1.1. Kinematics. We call a body whose extension can be neglected a particle and denote by
r its position relative to a reference frame. This means that the three components of the vector
r are cartesian coordinates. We denote them by x, y, z. The motion of a particle is then given
by the map

t 7→ r(t) =

x(t)
y(t)
z(t)

 , (1)

where the parameter t is time. The velocity v(t) and acceleration a(t) are given by

v(t) = ṙ(t) , a(t) = v̇(t) = r̈(t) , (2)

where we use the notation

ṙ(t) =
dr

dt
(t) (3)

and the derivative of a vector is given by its component-wise derivative

ṙ(t) =

ẋ(t)
ẏ(t)
ż(t)

 . (4)

1.1.2. Newtons First Law of Motion. Newtons first law states that:
A body remains at rest or in uniform motion unless acted upon by a force.

In this statement we identify the body with a particle and by being at rest or in uniform motion
it is meant that either v = 0 or v = const ̸= 0, i.e.

a = 0 . (5)

The meaning of the term force is only given later through the statement of Newtons second
law of motion (see 1.1.3) but it originates from some kind of interaction involving the particle.
We call a particle which does not interact a free particle and through this notion reformulate
Newtons first law of motion as:
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There exist reference frames, relative to which a free particle either rests or
moves with constant velocity.

These reference frames are called inertial frames. I.e. Newtons first law of motion postulates
the existence of inertial frames. A good example for an inertial frame is a frame which is at rest
relative to the fixed stars.

There exist infinitely many inertial frames, related to each other by coordinate transforma-
tions of the form

r =

x
y
z

 7→

x̃
ỹ
z̃

 = r̃ . (6)

Examples:
(i) r̃ = r + b with b a constant vector is a translation.
(ii) r̃ = Rr with R a constant rotation matrix R is a rotation.
(iii) r̃ = r + tc with c a constant vector is a motion of the x̃-ỹ-z̃-frame relative to the

x-y-z-frame with velocity c. Such a transformation is called a Galilean transformation.
(iv) t 7→ t̃ = t+ d with d a constant is a time translation.

Remarks:
(i) For each of the above examples from r̈ = 0 follows that ¨̃r = 0.
(ii) The transformation

r 7→ r̃ = Rr + tc+ a (7)

t 7→ t̃ = t+ d (8)

is called a general Galilean transformation.

1.1.3. Newtons Second Law of Motion. Newtons second law of motion states that:
The time rate of change of momentum equals the force acting on the particle.

The corresponding mathematical statement is

ṗ = F , (9)

where we define

p := mv (10)

as the (linear) momentum. Here m is the mass, a (scalar) property of the particle measuring the
amount of matter the particle contains. Newtons second law of motion then gives the meaning
of the force F acting on the particle, which is a vector.

Remarks:
(i) (9) is a vector equation whose components:

Fx =
d

dt
(mvx) Fy =

d

dt
(mvy) , Fz =

d

dt
(mvz) (11)

are components relative to an inertial frame.
(ii) In general the force acting on a particle depends on the position r, the velocity ṙ and

the time t, i.e. F = F (r, ṙ, t).
(iii) If F (r, ṙ, t) is known, (9) is a differential equation for the position r(t) of the particle:

mr̈(t) = F (r(t), ṙ(t), t) . (12)

1.1.4. Conservation of Linear Momentum. If the force vanishes, then the momentum is a con-
served quantity. I.e.

F = 0 ⇒ ṗ = 0 (13)

Proof. The proof of this statement is a direct consequence of Newtons second law. □
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1.1.5. Conservation of Angular Momentum. Let

L := r × p , M := r × F (14)

be the angular momentum and the torque respectively. We have

L̇ =
d

dt
(r × p)

= ṙ × p+ r × ṗ

= v ×mv + r × F

= mv × v︸ ︷︷ ︸
=0

+r × F = M . (15)

I.e. the rate of change of angular momentum equals the torque. The conservation of angular
momentum

M = 0 ⇒ L̇ = 0 (16)

follows analogous to the conservation of linear momentum.

1.1.6. Energy. Let

T :=
mv2

2
(17)

be the kinetic energy, where v = |v|. Assuming that the mass m is constant, we have
dT

dt
=

m

2

d

dt
(v · v) = m

2
(v̇ · v + v · v̇) = mv · v̇ = v · F . (18)

For an interpretation of this expression we consider a particle at two times t1, t2. The change
in kinetic energy is

T2 − T1 =

∫ t2

t1

dT

dt
dt =

∫ t2

t1

F · v dt , (19)

where we use the notation Ti = T (ti) and dropped the arguments in the integral for better
readability. We rewrite

F · v dt = F · dr
dt

dt = F · dr . (20)

The corresponding finite expression is

F ·∆r = |F ||∆r| cos(θ) , (21)

where θ is the angle between the force F and the change in position ∆r. I.e. this expression
equals the component of F in the direction of ∆r times the absolute value of the change in
position |∆r|. This is defined as the work done by the force F on the particle while displacing
it by ∆r. I.e. the difference in kinetic energy equals the work done on the particle.

We call F conservative if there exists a function U(x, y, z) such that F = −∇U .
Remarks:

(i) U is called potential or potential energy.
(ii) ∇U = ∇U(x, y, z) and since F = −∇U , we have that F (r(t)) = −∇U(r(t)).
(iii) The potential U is only fixed up to a constant, i.e. ∇U = ∇(U + C) for C a constant.

We call E = T + U the total energy.

Proposition 1.1. If F is conservative, then the total energy E = T + U is conserved.

Proof. From (18) we have
dT

dt
(t) = v(t) · F (r(t)) = −v(t) · ∇U(r(t)) , (22)

where we wrote out all the argument. Using the chain rule we have
dU

dt
(t) =

d

dt
U(r(t)) =

∂U

∂x
(r(t))ẋ(t) +

∂U

∂y
(r(t))ẏ(t) +

∂U

∂z
(r(t))ż(t)

= ∇U(r(t)) · ṙ(t)
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= ∇U(r(t)) · v(t) , (23)

where for the first equal sign we used the short notation U(t) = U(r(t)). Putting together (22)
and (23) yields

dE

dt
(t) =

dT

dt
(t) +

dU

dt
(t) = 0 . (24)

□

1.2. System of Particles. We consider a system of n particles labeled by the index i = 1, . . . , n.
The equation of motion for the i’th particle is Newtons law of motion (9) with the force given as
the sum of an external force F ie and forces due to interactions of the i’th with the j’th (j ̸= i)
particle F ij :

ṗi = F ie +

n∑
j=1

j ̸=i

F ij , (25)

where pi = mivi = miṙi and ri denotes the position of the i’th particle. In the following we
restrict our treatment to a system of n = 2 particles, all our results can be generalized to the
case of n > 2. For n = 2, the equations of motion for the two particles are

ṗ1 = F 1e + F 12 , (26)
ṗ2 = F 2e + F 21 . (27)

1.2.1. Newtons Third Law of Motion. Newtons third law of motion states that:
The forces that two particles exert on each other are equal in magnitude, of
opposite direction and parallel to the line joining the two particles.

The corresponding mathematical statement is

F 12 = −F 21 and F 12 ∥ r2 − r1 . (28)

1.2.2. Center of Mass Motion. Adding equations (26), (27) we obtain

ṗ1 + ṗ2 = F 1e + F 2e + F 12 + F 21

= F 1e + F 2e , (29)

where we made use of the first of (28). Defining the total momentum P and the total external
force F e by

P := p1 + p2 , (30)
F e := F 1e + F 2e , (31)

respectively, (29) becomes

Ṗ = F e . (32)

I.e. if the external forces vanish then the total momentum is conserved, i.e.

F ie = 0 ⇒ Ṗ = 0 . (33)

With the total mass M and the center of mass R defined by

M := m1 +m2 , (34)

R :=
m1r1 +m2r2

M
, (35)

respectively, (32) becomes

MR̈ = F e , (36)

the equation of motion for a body of mass M and position R under the influence of a force F e.
If F e = 0, the center of mass follows a uniform motion, i.e.

R̈ = 0 . (37)
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1.2.3. Angular Momentum. By taking the cross product of (26), (27) with r1, r2, respectively
and adding the resulting equations, it can be shown that (see problem 1.2)

L̇ = M , (38)

where the total angular momentum L and the total torque M are given as

L := r1 × p1 + r1 × p1 , (39)
M := r1 × F 1e + r2 × F 2e . (40)

I.e. the rate of change of total angular moment equals the total torque. In particular, if the
torque vanishes, the total angular momentum is conserved.

1.2.4. Energy. The kinetic energy of the two particles is given by

T =
m1v

2
1

2
+

m2v
2
2

2
. (41)

We have
dT

dt
= m1v1 · v̇1 +m2v2 · v̇2

= v1 · F 1 + v2 · F 2 , (42)

where

F i = F ie + F ij . (43)

Proposition 1.2. If the interaction forces between particles depend only on the distance between
the particles, then they are conservative.

Proof. By the assumption of the proposition, the interaction forces are of of the form

F 12 = fe12 , F 21 = fe21 , (44)

where f is a function of one variable (the distance between the particles) and

e12 =
r2 − r1
|r2 − r1|

, e21 = −e12 . (45)

We define the potential U of the system as

U(r1, r2) := u(|r1 − r2|) , where u(s) :=

∫ s

s0

f(ρ)dρ . (46)

We then have by the chain rule
∂U

∂x1
(r1, r2) =

du

ds
(|r1 − r2|)

∂

∂x1
|r1 − r2|

= f(|r1 − r2|)
x1 − x2

|r1 − r2|
, (47)

where we used
∂

∂x

√
x2 + y2 + z2 =

x√
x2 + y2 + z2

. (48)

It follows that

∇1U(r1, r2) = f(|r1 − r2|)
r1 − r2
|r1 − r2|

= −f(|r1 − r2|)e12
= −F 12(r1, r2) , (49)

where we used the notation

∇1 =

 ∂
∂x1
∂

∂y1
∂

∂z1

 . (50)
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Analogously we find

∇2U(r1, r2) = −F 21(r1, r2) , (51)

i.e. the forces are conservative. □

Remark: (49), (51) can be written as

∇U = −F , (52)

where

∇ =

(
∇1

∇2

)
, F =

(
F 12

F 21

)
. (53)

We have

Proposition 1.3. If the interaction forces between particles depend only on the distance between
them and in addition the external forces are conservative, i.e.

F ie = −∇iUe , (54)

then the total energy of the system

E = T + U + Ue (55)

is conserved.

Proof. Using
d

dt
miv

2
i = 2mivi · v̇i , ∇iU = −F ij , ∇iUe = −F ie , (56)

together with the equations of motion (26), (27), we obtain
dT

dt
= v1 · (m1v̇1 − F 12 − F 1e) + v2 · (m2v̇2 − F 21 − F 2e) = 0 . (57)

□

6 Lisibach, 2024



Appendix A. Mathematical Identities

Product rule for functions of one variable g(t), g(t) and vector valued functions of one variable
a(t), b(t):

d

dt
(fg) =

df

dt
g + f

dg

dt
, (58)

d

dt
(a · b) = da

dt
· b+ a · db

dt
, (59)

d

dt
(a× b) =

da

dt
× b+ a× db

dt
, (60)

where we did not write the argument t.
Chain rule for functions of one variable f(t), g(t) and a function of several variables F (x, y, z)

composed with a vector valued function of one variable r(t):
d

dt
f(g(t)) = f ′(g(t))

dg

dt
(t) , (61)

d

dt
F (r(t)) = ∇F (r(t)) · dr

dt
(t) , (62)

where we denote by f ′ the derivative of f with respect to its argument.
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