
LAGRANGIAN MECHANICS
PROBLEM SETS

LISIBACH ANDRÉ

In the following we use boldface symbols to denote vectors.

1. Hand in: 5.3.24, count: 15Pts.

1.1. Rotating Reference Frame. Let r(t) describe the two-dimensional motion of a
particle in an inertial frame. Let s(t) describe the same motion but in a reference frame
which is related to the inertial frame by r = Rs, where

R = R(t) =

(
cos(ωt) − sin(ωt)
sin(ωt) cos(ωt)

)
.

I.e. s(t) describes the motion of the particle in a reference frame which rotates counter
clockwise relative to the inertial frame with angular velocity ω.

(i) The equation of motion in the inertial frame is given by mr̈ = F . Show that
the equation of motion in the rotating frame is

ms̈ = K + F cf + F co,

where K = R−1F is the acting force written in components of the rotating
frame and

F cf = −mR−1R̈s, F co = −2mR−1Ṙṡ

are the centrifugal and Coriolis forces respectively (both being inertial forces).
Hint: Take the time derivative of r = Rs twice and multiply the resulting

equation with R−1(t) = R(−t) from the left.
(ii) Compute the inertial forces in terms of m, ω, s and ṡ and draw these two forces

qualitatively in the following situation which shows the location and velocity of
the particle in the rotating frame at a certain instant of time:

x′

y′

s

ṡ

Hint: Compute the matrix products first, before multiplying with the vectors
s, ṡ.

1.2. Angular Momentum of System of Particles. Show that the rate of change of
the angular momentum of a system of particles equals the torque due to the external
forces. I.e. show that

L̇ = M ,
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where L and M are the angular momentum of the system of particles and the torque
due to the external forces, respectively, given by

L =

n∑
i=1

ri × pi, M =

n∑
i=1

ri × F ie.

Hint: Take the cross product of ri with both sides of the equation of motion for the
i’th particle:

ṗi = F ie +
n∑

j=1

j ̸=i

F ij

and sum over the index i. To convince yourself that the resulting double sum
∑n

i=1

∑n
j=1

j ̸=i
. . .

vanishes, consider first the case n = 2 and use Newtons third law.

1.3. Decomposition of Kinetic Energy. Show that the kinetic energy T of a system
of n particles with masses mi and velocities vi = |ṙi|

T =

n∑
i=1

1

2
miv

2
i

can be written as the sum of the kinetic energy of the center of mass motion TR and the
kinetic energy of the relative motion Tr, where

TR =
1

2
MṘ2, Tr =

n∑
i=1

1

2
miṙ

2
iR.

Here M and R are the total mass and the center of mass of the system respectively.
Also,

riR = ri −R

is the position of the i’th particle relative to the center of mass.
Hint: Compute the above expression for the kinetic energy T , using ri = riR+R and

the definition of the center of mass: R =
∑

imiri/M .

2. Hand in: 26.3.24, count: 10Pts.

2.1. Periodic Motion in Potential Well. We consider the one dimensional motion
of a particle of mass m in a potential well U(x).

(i) Show that the period of motion is given by

τ =
√
2m

∫ x2

x1

dx√
E − U(x)

,

where E is the energy and x1, x2 are the turning points of the motion.
Hint: Use E = 1

2mẋ2 + U(x), and solve for dt.
(ii) Let now U(x) = 1

2kx
2, where k is a constant. Show that

τ = 2π

√
m

k
.

Compare this result with the period found by directly solving Newtons equation
of motion F = mẍ with F (x) = −U ′(x) = −kx.

Hint: The resulting integral can be solved using the substitution u = x
√

k/(2E)
and

−
∫

1√
1− u2

du = arccos(u) + C.
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2.2. Virial Theorem. The goal of this problem is to show that for periodic, one di-
mensional motion in a potential U(x) = axn, with a a constant and n ∈ N, the virial
theorem holds:

T =
n

2
U.

Here T , U are the average values of the kinetic and potential energy respectively over
one period of motion. I.e. we use the notation

f =
1

τ

∫ τ

0
f(t) dt,

where τ is the period of motion.
(i) Considering the quantity

G = px,

(where p is the momentum) and using Newtons law of motion, show that

T =
1

2

dG

dt
− 1

2
Fx.

(ii) Show that

Fx = −nU

and use this in the above expression for T to show the virial theorem.
(iii) Argue that a stronger version of the theorem is true, namely that T = n

2U holds
even for non periodic motion but the average over one period being replaced by

f = lim
τ→∞

1

τ

∫ τ

0
f(t) dt,

provided that the position and velocity of the motion stay finite.

3. Hand in: 2.4.24, count: 10Pts.

3.1. Parabolic and Hyperbolic Orbits. In the lecture it has been shown that the
polar coordinates r, φ of the orbits in Keplers problem satisfy

1 + ε cos(φ) =
p

r
,

where

ε =

√
1 +

2El2

µα
, p =

l2

µα
, with α = Gm1m2,

where E is the energy, l the absolute value of the angular momentum, µ the reduced
mass, G the gravitational constant and m1, m2 are the masses of the sun and the planet
respectively.

(i) Any point on a parabola is in equal distance to the focal point F and a line λ.
See the figure below. Show that for E = 0 the orbit is a parabola with focal point
F at the origin and the line λ being perpendicular to the x-axis and intersecting
the x-axis at x = p.

(ii) For any point on a hyperbola the difference of the distances to two focal points
F1, F2 is constant. See figure below. Show that for E > 0 the orbits are of
hyperbolic shape with one of the focal points at the origin and the other on the
x-axis at x = 2aε, where a = p/(ε2 − 1).
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Hint: This can be shown in almost the same way as it has been shown for
elliptic orbits in the lecture.

Parabola: r = r

x

y

λ

F

r

r

Hyperbola: r − r = 2a

x

y

r
r

F1 F2

3.2. Lagrangian Function for Pendulum. In the following we consider the single
and double pendulum in a homogeneous gravitational field:

l

m

φ

x

y

x

y
l2

m2

l1

m1

φ1

φ2

We neglect the masses of the rods l, l1, l2 and consider the masses m, m1, m2 as point
masses. I.e. we consider the pendulums as mathematical pendulums.

(i) Show that the Lagrangian L = T − U for the single pendulum, in terms of the
generalized coordinate φ, is given by

L =
m

2
l2φ̇2 +mgl cos(φ).

Hint: Write down the expressions for x(t), y(t) in terms of φ(t) and find from
these the kinetic and potential energy

T =
m

2
(ẋ2 + ẏ2), U = −mgy.

(ii) Show that the Lagrangian L = T −U for the double pendulum, in terms of the
generalized coordinates φ1, φ2, is given by

L =
m1 +m2

2
l21φ̇

2
1 +

m2

2
l22φ̇

2
2 +m2l1l2φ̇1φ̇2 cos(φ1 − φ2)

+ (m1 +m2)gl1 cos(φ1) +m2gl2 cos(φ2).
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Hint: Show that

x2 = l1 sin(φ1) + l2 sin(φ2), y2 = l1 cos(φ1) + l2 cos(φ2)

and use the derivates of these expressions to write down the kinetic energy of
m2 in terms of φ1, φ2. Make use of

cos(a) cos(b) + sin(a) sin(b) = cos(a− b).

4. Hand in: 16.4.24, count: 15Pts.

4.1. Testing Hamiltons Principle for Freely Falling Body. We consider a particle
of mass m = 1/2, freely falling in a homogeneous gravitational field corresponding to an
acceleration g = 2. Let x(t) denote the position as measured downwards from the initial
point and let x(0) = ẋ(0) = 0.

(i) From Newtonian mechanics we know that the particle falls according to x(t) =
1
2gt

2 = t2. In particular x(1) = 1. We now consider an alternative path between
t = 0 and t = 1, given by

x(t) = t2 + f(t),

where f(t) is an arbitrary function satisfying f(0) = f(1) = 0. Show that the
action

S =

∫ 1

0
Ldt

corresponding to f(t) ≡ 0 is minimal.
Hint: Follow the same procedure as discussed in the lecture for the free particle

and use integration by parts to take care of the mixed term resulting from ẋ2

in the kinetic energy term.
(ii) Use the Euler-Lagrange equation to derive the equation of motion and confirm

x(t) as given in (i) using the initial conditions.

4.2. Pendulum on Wheel. We consider a mathematical pendulum with mass m and
length l whose point of support is attached to a wheel. The radius of the wheel is a, it
rotates clockwise with constant angular velocity ω and the point of support is on the
positive x-axis at t = 0. See the figure.

(i) Find the positions x, y and the velocities ẋ, ẏ
of the mass m in terms of the generalized coor-
dinate φ and t.

(ii) Find the expressions for the kinetic and poten-
tial energy and from these show that the Lag-
rangian L is given by

L =
m

2

(
a2ω2 + l2φ̇2 − 2alωφ̇ sin(ωt+ φ)

)
+mg

(
a sin(ωt) + l cos(φ)

)
.

Hint: Use

sin(a) cos(b) + cos(a) sin(b) = sin(a+ b).

(iii) Use the Euler-Lagrange equation to show that
φ satisfies the equation of motion

φ̈ =
ω2a

l
cos(ωt+ φ)− g

l
sin(φ).

l

m

φ

x

y

a

ω
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4.3. Equivalent Lagrangian Functions. Let L(q, q̇, t) and L(q, q̇, t) be two Lagran-
gian functions differing by the time derivative of some function F (q, t), i.e.

L(q, q̇, t) = L(q, q̇, t) +
d

dt
F (q, t).

Show that the equations of motion corresponding to L and L are the same.
Hint: Consider the action

S =

∫ t2

t1

L(q, q̇, t)dt

using the fundamental theorem of calculus and examine the effect of the additional terms
when deriving the Euler-Lagrange equations, i.e. when computing

d

dε
S[q + εq̃]

∣∣∣
ε=0

,

where q̃ is an arbitrary function with q̃(t1) = q̃(t2) = 0.
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