LAGRANGIAN MECHANICS
PROBLEM SETS

LISIBACH ANDRE

In the following we use boldface symbols to denote vectors.

1. HAND IN: 5.3.24, COUNT: 15PTs.

1.1. Rotating Reference Frame. Let r(t) describe the two-dimensional motion of a
particle in an inertial frame. Let s(t) describe the same motion but in a reference frame
which is related to the inertial frame by 7 = Rs, where

R = R(t) - <cos(wt) —sin(wt)) .

sin(wt)  cos(wt)
L.e. s(t) describes the motion of the particle in a reference frame which rotates counter
clockwise relative to the inertial frame with angular velocity w.

(i) The equation of motion in the inertial frame is given by m# = F. Show that
the equation of motion in the rotating frame is

ms = K + Fof + F,,

where K = R™'F is the acting force written in components of the rotating
frame and

F. = -mR 'Rs, F., = —2mR™'Rs

are the centrifugal and Coriolis forces respectively (both being inertial forces).
Hint: Take the time derivative of = Rs twice and multiply the resulting
equation with R=1(t) = R(—t) from the left.
(ii) Compute the inertial forces in terms of m, w, s and § and draw these two forces
qualitatively in the following situation which shows the location and velocity of
the particle in the rotating frame at a certain instant of time:

vy

Hint: Compute the matrix products first, before multiplying with the vectors
s, S.

1.2. Angular Momentum of System of Particles. Show that the rate of change of
the angular momentum of a system of particles equals the torque due to the external
forces. L.e. show that

L=M,
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where L and M are the angular momentum of the system of particles and the torque
due to the external forces, respectively, given by

n n
L:Z’I’ixpi, M:ZTiXFie'
=1

i=1
Hint: Take the cross product of r; with both sides of the equation of motion for the
i’th particle:

=Fi + Z F

J#z
and sum over the index 7. To convince yourself that the resulting double sum > " | > 77, ...
J#i
vanishes, consider first the case n = 2 and use Newtons third law.

1.3. Decomposition of Kinetic Energy. Show that the kinetic energy T of a system
of n particles with masses m; and velocities v; = ||

n 1 )
T = Z §mivi
i=1

can be written as the sum of the kinetic energy of the center of mass motion T and the
kinetic energy of the relative motion 7)., where

1 1
= iMRz, T?“ = Z imﬂ’?R

Here M and R are the total mass and the center of mass of the system respectively.
Also,

riR:ri—R

is the position of the i’th particle relative to the center of mass.
Hint: Compute the above expression for the kinetic energy T', using r; = r;g + R and
the definition of the center of mass: R =), m;r;/M.

2. HAND IN: 26.3.24, COUNT: 10PTs.

1. Periodic Motion in Potential Well. We consider the one dimensional motion
of a particle of mass m in a potential well U(x).

(i) Show that the period of motion is given by

= [ rem
E-U
where E is the energy and x1, To are the turning points of the motion.
Hint: Use E = 2m:1: + U(z), and solve for dt.

(ii) Let now U(z) = $kxz?, where k is a constant. Show that

fm
=2my [ —.
T us A

Compare this result with the period found by directly solving Newtons equation
of motion F' = ma with F(z) = —-U'(x) = —ka.

Hint: The resulting integral can be solved using the substitution u = z+/k/(2F)
and

= arccos(u) + C.
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2.2. Virial Theorem. The goal of this problem is to show that for periodic, one di-
mensional motion in a potential U(x) = az™, with a a constant and n € N, the virial
theorem holds:

T=_U.
2

Here T, U are the average values of the kinetic and potential energy respectively over
one period of motion. I.e. we use the notation

=1 [ s
where 7 is the period of motion.
(i) Considering the quantity
G = pzx,

(where p is the momentum) and using Newtons law of motion, show that

(ii) Show that

and use this in the above expression for 7' to show the virial theorem.
(iii) Argue that a stronger version of the theorem is true, namely that 7" = U holds
even for non periodic motion but the average over one period being replaced by

F—tim = [,
0

T—00 T

provided that the position and velocity of the motion stay finite.

3. HAND IN: 2.4.24, cOUNT: 10PTs.

3.1. Parabolic and Hyperbolic Orbits. In the lecture it has been shown that the
polar coordinates 7, ¢ of the orbits in Keplers problem satisfy

1+ ecos(p) = Q’
r
where
2E12 12
e=4/1+ , p=—, with a = Gmima,
Ho Ho

where E is the energy, [ the absolute value of the angular momentum, g the reduced
mass, G the gravitational constant and my, ms are the masses of the sun and the planet
respectively.

(i) Any point on a parabola is in equal distance to the focal point F' and a line .
See the figure below. Show that for £ = 0 the orbit is a parabola with focal point
F' at the origin and the line A being perpendicular to the z-axis and intersecting
the z-axis at = = p.

(ii) For any point on a hyperbola the difference of the distances to two focal points
Fy, Fy is constant. See figure below. Show that for £ > 0 the orbits are of
hyperbolic shape with one of the focal points at the origin and the other on the
r-axis at x = 2ae, where a = p/(e? — 1).
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Hint: This can be shown in almost the same way as it has been shown for
elliptic orbits in the lecture.

Parabola: r =7 Hyperbola: 7 — r = 2a
Y Y
N . : .
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3.2. Lagrangian Function for Pendulum. In the following we consider the single
and double pendulum in a homogeneous gravitational field:

7 7

We neglect the masses of the rods [, I1, I3 and consider the masses m, mi, ms as point
masses. .e. we consider the pendulums as mathematical pendulums.
(i) Show that the Lagrangian L = T — U for the single pendulum, in terms of the
generalized coordinate ¢, is given by

L= %ZngQ + mgl cos(p).

Hint: Write down the expressions for z(t), y(¢) in terms of ¢(¢) and find from
these the kinetic and potential energy
m., . .
T=2@"+§"), U=-mgy.
(ii) Show that the Lagrangian L = T — U for the double pendulum, in terms of the
generalized coordinates 1, @2, is given by
m1 + mg 2

ma
2 1 5!

2

L= o7 + 303 + malilagr pa cos(pr — pa)
+ (mq + ma)gly cos(p1) + magle cos(p2).
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Hint: Show that
xo = Iy sin(p1) + lasin(pa), y2 = 1 cos(p1) + la cos(p2)

and use the derivates of these expressions to write down the kinetic energy of
me in terms of 1, ws. Make use of

cos(a) cos(b) + sin(a) sin(b) = cos(a — b).

4. HAND IN: 16.4.24, COUNT: 15PTs.

4.1. Testing Hamiltons Principle for Freely Falling Body. We consider a particle
of mass m = 1/2, freely falling in a homogeneous gravitational field corresponding to an
acceleration g = 2. Let x(¢) denote the position as measured downwards from the initial
point and let x(0) = ©(0) = 0.

(i)

(i)

From Newtonian mechanics we know that the particle falls according to x(t) =
% gt? = t2. In particular (1) = 1. We now consider an alternative path between
t=0andt=1, given by

o) = £ + (1),
where f(t) is an arbitrary function satisfying f(0) = f(1) = 0. Show that the

action
1
S:/ Ldt
0

corresponding to f(¢) = 0 is minimal.

Hint: Follow the same procedure as discussed in the lecture for the free particle
and use integration by parts to take care of the mixed term resulting from &2
in the kinetic energy term.

Use the Euler-Lagrange equation to derive the equation of motion and confirm
x(t) as given in (i) using the initial conditions.

4.2. Pendulum on Wheel. We consider a mathematical pendulum with mass m and
length [ whose point of support is attached to a wheel. The radius of the wheel is a, it

rotates

clockwise with constant angular velocity w and the point of support is on the

positive z-axis at t = 0. See the figure.

(i)

(i)

L= % (a2w2 + 12¢? — 2alwy sin(wt + <,0)>

(iii)

Find the positions z, y and the velocities &, y w
of the mass m in terms of the generalized coor- . a/\
dinate ¢ and t. | '
Find the expressions for the kinetic and poten- \
tial energy and from these show that the Lag- AN
rangian L is given by

+ mg (a sin(wt) +1 cos(cp)) :

Hint: Use
sin(a) cos(b) + cos(a) sin(b) = sin(a + b).

Use the Euler-Lagrange equation to show that
i satisfies the equation of motion
2
P = # cos(wt + ¢) — % sin(yp).
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4.3. Equivalent Lagrangian Functions. Let L(q,q,t) and L(q,q,t) be two Lagran-
gian functions differing by the time derivative of some function F(q,t), i.e.

. ) d

Show that the equations of motion corresponding to L and L are the same.
Hint: Consider the action

5= [ Tla.d.o
t

1
using the fundamental theorem of calculus and examine the effect of the additional terms
when deriving the Euler-Lagrange equations, i.e. when computing
d_
—Slg+eq
T=ola+ed)
where ¢ is an arbitrary function with ¢(¢1) = ¢(t2) = 0.

)
e=0
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